
SK 10 GD 123

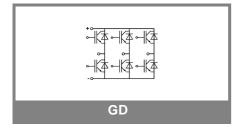
SEMITOP® 3

IGBT Module

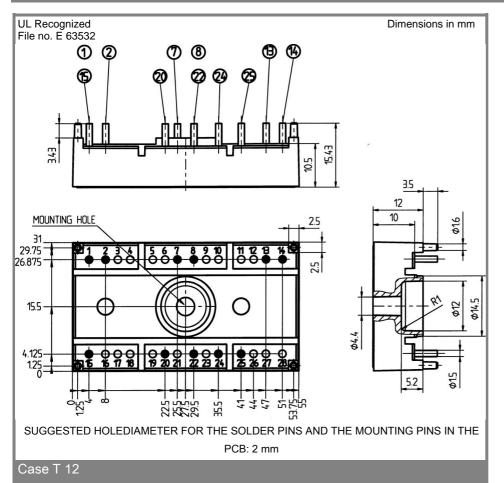
SK 10 GD 123

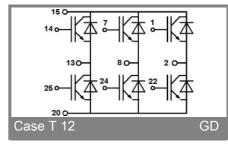
Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E 63532

Typical Applications


- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS


Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	16 (11)	Α				
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) \text{ °C;}$	32 (22)	Α				
T _j	ľ	- 40 + 150	°C				
Inverse/Freewheeling CAL diode							
I _F	T _s = 25 (80) °C;	18 (12)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	36 (24)	Α				
T_{j}		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

Character	istics	T _s = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{CE(sat)}	$I_C = 10 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$		2,7 (3,3)	3,2 (3,9)	V		
V _{GE(th)}	$V_{CE} = V_{GE}$; $I_{C} = 0,0004 \text{ A}$	4,5	5,5	6,5	V		
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		0,53		nF		
$R_{th(j-s)}$	per IGBT			1,8	K/W		
	per module				K/W		
	under following conditions:						
t _{d(on)}	$V_{CC} = 600 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		30		ns		
t _r	$I_C = 10 \text{ A}, T_j = 125 °C$		45		ns		
t _{d(off)}	$R_{Gon} = R_{Goff} = 50 \Omega$		200		ns		
t _f			35		ns		
$E_{on} + E_{off}$	Inductive load		2,3		mJ		
Inverse/Freewheeling CAL diode							
	I _F = 10 A; T _i = 25 (125) °C		2 (1,8)	2,5 (2,3)	V		
$V_{(TO)}$	$T_{j} = (125) ^{\circ}C$		(1)	(1,2)	V		
r _T	$T_{j} = (125) ^{\circ}C$		(80)	(110)	mΩ		
$R_{th(j-s)}$				2,1	K/W		
	under following conditions:						
I _{RRM}	I _F = 10 A; V _R = 600 V		12		Α		
Q_{rr}	$dI_F/dt = -300 A/\mu s$		1,8		μC		
E _{off}	V _{GE} = 0 V; T _j = 125 °C		0,4		mJ		
Mechanical data							
M1	mounting torque			2,5	Nm		
w			30		g		
Case	SEMITOP® 3		T 12				

SK 10 GD 123

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.